Neural Decoding for Motor and Communication Prostheses

نویسندگان

  • Byron M. Yu
  • Gopal Santhanam
  • Maneesh Sahani
  • Krishna V. Shenoy
چکیده

Neural prostheses, which are also termed brain–machine and brain–computer interfaces, offer the potential to substantially increase the quality of life for people suffering from motor disorders, including paralysis and amputation. Such devices translate electrical neural activity from the brain into control signals for guiding paralyzed upper limbs, prosthetic arms, and computer cursors. Several research groups have now demonstrated that monkeys (e.g., Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Mulliken et al., 2008; Velliste et al., 2008) and humans (e.g., Kennedy et al., 2000a; Leuthardt et al., 2004; Wolpaw and McFarland, 2004b; Hochberg et al., 2006; Kim et al., 2008; Schalk et al., 2008) can learn to move computer cursors and robotic arms to various target locations simply by activating neural populations that participate in natural arm movements. Figure 7.1 illustrates the basic operating principle of neural prosthetic systems. Neural activity from various arm movement–related brain regions (e.g., Wise et al., 1997) is electronically processed to create control signals for enacting the desired movement. Non invasive sensors can collect neural signals representing the average activity of many neurons. When invasive permanently implanted arrays of electrodes are employed, as depicted, it is possible to use waveform shape differences to discriminate individual neurons (e.g., Lewicki, 1998; Santhanam et al., 2004). After determining how each neuron responds before and during a movement, which is typically accomplished by correlating arm movements made during a behavioral task with

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural control of motor prostheses.

Neural interfaces (NIs) for motor control have recently become increasingly advanced. This has been possible owing to substantial progress in our understanding of the cortical motor system as well as the development of appropriate decoding methods in both non-human primates and paralyzed patients. So far, neural interfaces have controlled mainly computer screens and robotic arms. An important a...

متن کامل

Neural Prostheses: Linking Brain Signals to Prosthetic Devices

This paper discusses Neuroprosthetic applications for potential use by paralyzed patients or amputees. These systems require advanced processing of neural signals to drive the prosthetic devices using decoding algorithms. The possibility of predicting motor commands from neural signals are the core of neural prosthetic devices and along this line we show how it is possible to predict movement i...

متن کامل

A functional model and simulation of spinal motor pools and intrafascicular recordings of motoneuron activity in peripheral nerve

Decoding motor intent from recorded neural signals is essential for the development of effective neural-controlled prostheses. To facilitate the development of online decoding algorithms we have developed a software platform to simulate neural motor signals recorded with peripheral nerve electrodes, such as longitudinal intrafascicular electrodes (LIFEs). The simulator uses stored motor intent ...

متن کامل

Nonlinear physically-based models for decoding motor-cortical population activity

Neural motor prostheses (NMPs) require the accurate decoding of motor cortical population activity for the control of an artificial motor system. Previous work on cortical decoding for NMPs has focused on the recovery of hand kinematics. Human NMPs however may require the control of computer cursors or robotic devices with very different physical and dynamical properties. Here we show that the ...

متن کامل

Current challenges to the clinical translation of brain machine interface technology.

Development of neural prostheses over the past few decades has produced a number of clinically relevant brain-machine interfaces (BMIs), such as the cochlear prostheses and deep brain stimulators. Current research pursues the restoration of communication or motor function to individuals with neurological disorders. Efforts in the field, such as the BrainGate trials, have already demonstrated th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010